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In this paper we present a numerical formulation to solve the incompressible
Navier—Stokes equations written in a rotating frame of reference. The method is
based on a finite difference discretization in time and a finite element discretization
in space. When the viscosity is very small, numerical oscillations may appear due both
to the high Reynolds number and to the presence of the Coriolis forces. To overcome
these oscillations, a special discretization in time is proposed. The idea is to discretize
the total time derivative in an inertial basis rather than only the partial time derivative
in the rotating reference system. After this is done, a further high-order approxima-
tionisintroduced, leading to a problem posed in the rotating frame of reference and in
spatial coordinates. In contrast with the straightforward discretization of the original
equations, some additional terms appear that enhance the stability of the numerical
scheme. In the absence of Coriolis forces, the method is a generalization of the char-
acteristic Galerkin technique for convection-dominated flows.1999 Academic Press

Key Words:incompressible flows; Coriolis forces; method of characteristics; in-
ertial bases; stabilized finite element methods.

1. INTRODUCTION
The objective of this paper is to present a numerical formulation to solve the incompre
ible Navier—Stokes equations written in a rotating frame of reference. These equations
au
§+U-Vu+2wxu—vAu+Vp+wx(wxr)—f:O, (1a)

V.u=0, (1b)
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whereu is the velocity field,p is the pressure divided by the (constant) density (i.e., th
kinematic pressurej, is the vector of body forces, andis the kinematic viscosity of the
fluid. The constant vectas is the velocity of rotation of the frame of reference and therefor:
2w x uandw x (w x r) are the Coriolis and centrifugal forces, respectively. Equations (:
must be supplied with initial and boundary conditions that shall be introduced when nec
sary. The computational domain where the problem is to be solved is denofedrny the
time interval by [Q T]. The vector of position in this domain is denotedray (X1, X2, X3).
Here and below, a Cartesian coordinate system is assumed, with{basis e;} in the
three-dimensional case considered throughout.

There are several numerical difficulties associated with system (1). In the next two s
tions we shall address the problems found when the viscosgwery small and, hence,
viscous forces are small compared either to the inertial forces or to the Coriolis forces.
dimensionless numbers used to quantify these effects are the Reynolds number Re ar
Ekman number Ek, defined as

UL v

Re = —, Eki=—,
v wl?

)

whereU is a characteristic velocity, is a characteristic length, aag= |w|. The numerical
problems encountered when Re is high are well known. However, less attention has t
paid to the problems arising when Ek is small, that is, when Coriolis forces dominate visc
forces. We treat this point in Section 3, where we present a method based on the same
as the characteristic Galerkin method described in Section 2 for convection domine
flows.

The basic idea of the numerical scheme proposed here is to write the conservation e
tions in an inertial frame of reference and discretizing the total time derivative using fin
differences, instead of only the partial time derivative. In fact, this is the basic idea of 1
characteristic Galerkin method [1-3], although, to our knowledge, it has not been app
to the Navier—Stokes equations with Coriolis forces. The original characteristic Galer!
method is precisely the subject of the following section. We present here a particular \
sion of this technique that generalizes some previous schemes [4] and shows its conne
with other methods currently used for convection dominated flows [5-7] (see [8] for
comparison between all these methods).

The Coriolis and centrifugal forces of the Navier—Stokes equations arise because
velocity is expressed in a basis that varies in time. The discretization of the total ti
derivative involves therefore two different bases in a typical single step finite differen
discretization. Both these bases must be expressed initially in terms of an inertial basi
Section 3 we show how one of the rotating bases can be expressed in terms of the other
leading to a problem for the components of the momentum expressed in the latter. S
the starting point is writing the equations in an inertial reference system, we shall refe
this approach as thaertial Galerkin method

It has to be stressed that the previous ideas are independent of the time discre
tion technique employed and, in fact, their motivation is based on the stability proble
found in spacewhen standard discretization techniques are used (centered finite diff
ences or Galerkin finite element or spectral methods). However, the analysis prese
here will be based on a particular time discretization, namely, the generalized trapezc
rule, even though the possibility of using other time integration schemes is complet
open.
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In Section 4 some aspects related to the finite element method as a particular s
discretization technique are described briefly. Finally, some numerical experiments
presented in the last section of the paper to show the effectiveness of the proposed scf

Let us introduce some notation now. Let@y <t; <--- <ty =T be a partition of the
time interval [Q T]. For simplicity of notation, we take the time step ske=t, —t,_1
constantn=1, 2, ..., N. For a generic functio of the positionx and the timet we
use the abbreviatiop" for ¢(x, t,) or for the approximation to it arising from a problem
discretized in time. Also, for a numbgre [0, 1] we definep™f := "1 + (1 — B)o".
The partial derivative with respect to tihlh coordinatex; is denoted either by /dx; or
simply by d; ¢, if there is no possibility of confusion. The Einstein convention is employe
for repeated indices.

2. CHARACTERISTIC GALERKIN METHOD FOR THE INCOMPRESSIBLE
NAVIER-STOKES EQUATIONS

2.1. Description of the Method

For the purposes of this section it is enough to consider now system (1J.wit, that
is,

au
5+u-Vu—vAu+Vp—f=0, (3a)

V.u=0. (3b)

Let us denote b (X, t; t) the trajectory of the particle that at tinte= t is located at the
spatial poinix, so thatX(X, t; t) = X. This trajectory will be the solution of the problem

d
axi ®) = ui(X(®), 1), (42)

Xi(t) = X (4b)

fori =1, 2, 3. In the short-hand notatiof(t) it is understood thaX depends also onand
X, through the initial condition (4b).

The conservation of momentum and mass for a particle of incompressible fluid a
moves along its trajectory may be then written as

%u(xa), t) — vAUCX(t), t) + VpX(t), t) — F(X(), t) = O, (5a)
V- u(X(t),t) = 0. (5b)

Since

(6)

X=X,t=t

d ou
UKD, Dl = (ﬁ tu- w)

Egs. (5) fort =t are precisely the Navier—Stokes equations (3) at the spatial peint
and at time =t. If there is no ambiguity, we shall usénstead of, to emphasize that this
position is arbitrary.
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The idea now is to discretize the derivativgdtl in Eq. (5a) using a finite difference
scheme, that is, to discretize the total derivative in Eq. (3a) along the characteristics.

If we employ a single step finite difference discretization, the highest time accuracy t
we can obtain is second order. In order to be as accurate as possibldfinstt(epatial)
argument of the velocity and the pressure, problem (5) has to be discretized up to se
order. Observe that the discretization in time in Eqg. (5a) involves both the first and the sec
arguments of the velocity and the pressure, since we want to move along the characteri
Once the second-order time discretization is done, different schemes can be obtaine
approximating thesecond(temporal) argument of the velocity and the pressure, yieldin
discrete schemes with a lower temporal accuracy but potentially second-order accura
space. Of course, our reference at the moment of considering the formal accuracy mu
problem (5), and not problem (3), although both of them are completely equivalent at
continuous level. Obviously, time integration schemes of order higher than 2 can be u
as well.

Suppose now that we have the solution at ttp@nd we want to compute it at tintg, ;.

Lett be a certain time intf, t,.1] and define

S:=—vAu+Vp (7

as the Stokes contribution to the momentum equation. The discretization of problem
that we consider is based on the generalized trapezoidal rule (also@&afiethod), which
leads to

1
E[U(X(tm—l)» thi1) — UX(tn), th)] + OS(X(thy1), thyr) + (1 = O)S(X(t), tn)
—0f X(thy1), thyn) — (1= 0) F(X(th), t) =0, (8a)
V- u(X(@),t) =0, (8b)

whered € [0, 1]. For the reasons explained above, we must takel/2, since this is the
only value off that yields second-order accuracy (Crank—Nicolson scheme).

Itis observed from Eq. (8b) that the incompressibility restriction has been applied at
reference time, although this will be irrelevant for the final time discrete scheme, as w
shall see.

The important point now is that we shall derive an explicit expression for the terr
UX(the1), ther) andu(X(ty), ty), as well as forp(X(th11), the1) and o(X(tn), ty) for a
given functiony. This will allow us to obtain a semi-discrete system of equations, where
the terms will be evaluated at the same point of the same spatial domain. The paramete
we have still free is the reference tihewhich is associated with the reference coordinate
system. Within the time stefy[ t,..1] we shall take this time as=t, + yk, with y arbitrary.
Two particular cases of interest ape=1/2 andy =1, that is,t =t, +k/2 andt =tp, 1.
The former yields the classical Crank—Nicolson discretization of problem (3), whereas
later introduces some additional terms than enhance the stability of the numerical sche
From the geometrical standpointt = t, + k/2 Eq. (8a) (withd = 1/2) may be viewed as
centered discretization along the characteristics. On the other harid=tar; we move
backwards. This is relative to the particle we follow although in both cases the discretizat
is formally of second order.

As has already been mentioned in the Introduction, even though our starting poin
the generalized trapezoidal rule, the ideas introduced in what follows can also be apr
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to any finite difference time discretization of the continuous equations. The only term
discretization of which will be dictated by the use of Egs. (5) instead of Egs. (3) is t
convective one.

2.2. Discretization along the Characteristics

Leto(x, t) be ageneric function. The goal is to obtain a second- and a third-order appr
imation in time top(X(thy1), the1) ande(X(ty), t,). For a same order of approximation,
we shall use explicit approximationsstead of implicit ones. Thus, other schemes, apa
from the one derived below, exist with the same properties of accuracy.

Let us first note that from Egs. (4)

X(th+1) = Xt + ¥K) + (1 — p)KuX(ta + ¥K), ta) + O(k?)

=X+ (1—py)ku" + O(K?), (9a)
X(th) = X(th + k) — yku(X(ta + k). tn) + O(K?)
=X —yku" + O(K?). (9b)

Therefore, we may approximate

P(X(ths1), tay1) = (X + (1 — y)ku" + O(k?), thi1)
="+ (1 y)ku"- V" + O(K?), (10a)

where we have made use of the fact that! = ¢" + O(k), an approximation frequently
used hereafter. Similarly,

P(X(tn), th) = ¢" — yku" - V" + O(K?). (10b)

Using Egs. (10) taking the velocity as the functionp, we can obtain a third-order
approximation of the trajectory solution of problem (4) as

k
X(tn+1) = Xt + yk) + (1 — V)E[U(X(tn +7K), th + vK) + UX(ta11), tay)] + O ()

k
=X+ (1- y)é[(l — U + pu™t u™ 4 (1 — p)ku" - VU] + OK®)

k k2
=X+ 1L -p)s[A=pu"+ A+ U + @ -py)*Su" - Vu" + O3
2 2
(11a)
and, similarly,
k n n+1 2k2 n n 3
X(tn)=x—y§[(2—y)u +yu"™ ] +y U - VU 4+ O(K®). (11b)

Using Egs. (11) we obtain the desired approximations to the fungtiming again a Taylor
expansion. This approximation is

3§0n+l

9%

k
PKX(tht1), thir) = 9"+ (1 — 25 (A= pul + @+ pout?]

2k2 n d " 3
+1=y) Ui o + O(K3), (12a)
J
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and, in a similar way,

k " k2 0 "
Xt t) = " —py=[2—py)u! + yu = 4 p2—u'— (U | + O(Kd).
PX (). ) = ¢" =y S [@ = by a4 ISl Wg ) + 00

(12b)

These, together with Egs. (10), are the expressions we were looking for. They repre:
approximations to the functigmalong the trajectory of the particles (i.e., the characteristic
of the total derivative operator) at the beginning and the end of the time inté{valLh]
under consideration.

2.3. Semidiscrete Problem

We shall apply Egs. (10) and (12) now to obtain a second-orde approximation to
semidiscrete problem (8). From Egs. (12) takings theith component of the velocity,
we obtain

Ui (X (t+2), ths1) — Ui (X (t), to)
k
=M =+ (A=) [ = pouf + @+ pyuf o

k k2
+ Y [2—y)u] + yu?*l] jul + (11— ZJ/)EUP3| (uBjup) + o3

k _ _
— uin+1 _ uin + E [U?H + UT+1 V]ajuin+1 Y
k2
+ (1= 2y) Ul (uf9ut) + O, (13)
where we have made use of
L — U urt + pulgiul = M+ 0k, (14)
This in turn is a consequence of the fact that for a given bilinear functmnal

9@™F, o) = Bg(e™L, o™ 4 (1 — B)g(e", o) + O(k?). (15)

Also, using the identity

%[(pn+y + (er-l—y] — (pn+1/2’ (16)

Eqg. (13) may be written in vector form as
UX(th11), thyr) — UX(tn), tn)
k2
=u™! —u" 4 ku"Y2. vutr (1 — zy)zu" SV VU + O3, (17)

From Egs. (10) it is easy to see that

1 k
SleXtns), i) + 9 (X (t), )] = M2+ (11— 2y)5u" - Vo' + O(k?. (18)
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Using Egs. (17) and (18) in system (8) (with=1/2) we finally get the semidiscrete
problem

}[un+1 _ un] + un+l/2 . VunJrlfy _ 1)Aur1+l/2 +V pn+l/2 _ fn+1/2
k

k
— @y = DU Vu"- VU —vAU" + VP —f" =0,
(19)
v.u"t=o0.

The second equation in (19) is a second-order approximation of the incompressibi
constraint imposed at=t, + yk (see Eq. (8b)), since

VouX th+yk) =yV-u™l 4+ 1 —y)V.u"+ OK?), (20)

and assuming the initial condition to be divergence-free, the second equation in (19
enough to ensure thatXx, t, + yk) is also divergence-free up to second order.

It is observed from Eq. (19) that for = 1/2 we obtain the classical Crank—Nicolson
approximation of the original problem (3), even though Egs. (19) have been obtained fr
the discretization of problem (5} posterioriwe may, however, interpret them as the time
discretization of problem (3) plus the introduction of the term

k
—2y —1)§u”-V[u”-Vu” —vAU"+Vp" - ). (21)

Following this way, Eqgs. (19) are only a first-order approximation to problem (3), where
we have derived them as a (formally) second-order approximation to problem (5) and tal
the reference coordinate system at time t,, + yk.

From problem (19) we can obtain simplified versions of first-order accuracy in time |
replacing quantities at intermediate times betwgeandt, . ; either by values at, or t,;
(explicit orimplicit versions, respectively). Observe that this only involves an approximatit
in time, not in space. Neglecting the terms affected by the time step size in Egs. (
would imply also an approximation in space, since they come from an approximation of
characteristicX(t). Observe also that precisely the first term within the brackets in Eq. (2
is the one that will be responsible for the numerical stability of the scheme. Bdt/2, it
provides a dissipation term that for divergence-free veloaitiesill be streamline oriented,
the numerical viscosity being of magnitude

k
e = (2y — 1>§|u“|2. (22)

This term arises also in other numerical techniques in similar forms using very differ
arguments, such as in the so-called SUPG and Taylor-Galerkin methods (see, e.g., |
[5, 7]).

The characteristic Galerkin method in its original form [1, 2] was designed as a cru
first-order approximation in time (backward Euler scheme) and takiegl with our
notation. It also has the drawback of having to integrate the trajectories at each time |
and interpolating the valug(X(t), t,) within the element to which the poiMit,) belongs.
The idea of approximating the characteristics by using a Taylor expansion was introdu
in Refs. [3, 4]. We have presented here a new and more general derivation particularize
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the incompressible Navier—Stokes equations. The ideas behind it will serve us also in
derivation of the numerical technique presented in the next section.

3. INERTIAL GALERKIN METHOD FOR THE INCOMPRESSIBLE
NAVIER-STOKES EQUATIONS WITH CORIOLIS FORCES

3.1. Introduction

Another source of difficulties in the numerical solution of problem (1) whes very
small arises because of the Coriolis foree  u. The reason for these oscillations is in
essence the same as for the numerical problems encountered when there is a don
convective term; it is impossible to have control over any of them. To see this, we w
obtain now a stability estimate farusing a classical argument. For that, we consider th
simple backward Euler time approximation of Eq. (1),

1
E(ul‘l+l _ un) + un+1 . Vun+1 4 2w X un+1 _ UAunJrl + Vpn+l — f2+l’ (23)

wheref.=f —w x (w x r) and we have assumefdcontinuous in time. Equation (23)
must be supplied with the incompressibility constraintu"+* = 0. Let us denote by, -)
the L2 product in the domaif and by| - | the associated norm. To simplify the exposition,
we take the homogeneous Dirichlet boundary conditien0 on the whole boundarg<.
Multiplying Eq. (23) byu"*!, integrating ove£2, and using the facts thaf** is divergence-
free and(2a, a — b) = |a|?> — |b|? + |]a — b|? for any functionsa andb, we obtain

1 1 1 2
Z(|uﬁ+1|2_ |un|2 + |uﬂ+l_ un|2) _ v|vun+l|2 — (fg+l’ uf'H—l) < §|un+l|2+ é‘f2+1| .

(24)
If now we add up these inequalities fram= 0 up toN — 1 we get
N-1 N—1 N—1
|uN|2_ |u0|2+22vk|vun+l|2§ Zk|un+l|2+2k|f£|+l|2. (25)
n=0 n=0 n=0
The discrete Gronwall's inequality now yields (see, e.g., [9])
N-1 N—1
N2+ 3" 20k U < (U0 + C S K| £ (26)
n=0 n=0

whichis the discrete version of the classical energy estimate for the Navier—Stokes equat
[10]. Inthis equation and below; stands for any positive constant, not necessarily the san
in its different appearances.

From Eq. (26) we obtain two obvious stability bounds. First, we have that

N—-1
UV < U0+ C ) k| 27)
n=0
This estimate deteriorates Nsincreases. Nevertheless, it provides a meaningful bound f
[uN|? (and therefore for the kinetic energy of the flow) for the first few time steps, that |
for smallT.
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The other bound that results from (26) is

P4

—1 N-1
20k VU2 < U024+ C ST K[ £ (28)
n=0

=]
Il
o

If the kinematic viscosity is small, this inequality provides only a poor stability estimate
From the numerical point of view, the norm of the velocity gradient will be out of contro

Up to now, we have not made reference to any particular spatial discretization. |
us assume that this discretization is such that the discrete version of Eq. (28) holds
that|Ve| > C|¢|/h for any discrete functiorp, whereh is a measure of the size of the
discretization (for example, the element diameter if finite elements are employed). If n
we use this in Eq. (28) we have that

2 N-1 N-1
h—ZZk|u”+1|25C|u°|2+c2kyfg+l\2 (29)
n=0 n=0

where nowu must be understood as a discrete velocity. Numerically, this stability estime
is useful ifh?/v is of the order of a time scale of the problemvlfs very small, so must

h be. This sometimes may be prohibitive from the numerical standpoint. However, in
absence of Coriolis and convective forces, estimates (27) and (28) are enough, sinc
may defineu = vu and work withu.

Although the reason for the numerical oscillations that can be found due to the convec
and the Coriolis terms are similar and, as we have shown, can be traced back to the fac
both are orthogonal ta in the L2 inner product, there is an important difference betwee
these two terms. Let us consider the simple equation

—VAU+ 2w x u=f (30)

again with the boundary conditian= 0ond 2. Multiplying it by u firstand then by @ x u
and integrating ove®2, we find that

vivul < [f], 2w xul < |f], (31)

respectively. To obtain the second estimate in (31) we have usedtha¥ (2w x u) = 0,
the colon standing for the double contraction of two second-order tensors. We see thus
it is possible to obtain a stability bound for both the derivatives ahd the Coriolis force.
However, for the equation

—VAU+U-Vu=f (32)

(or for a linearized form of it), it is impossible to obtain any estimate for the convecti
term without relying on the value of the viscosity.

The numerical behavior of the finite element solution of Eq. (30) is discussed in Ref. [1
where the finite element solution of the stationary Stokes problem with Coriolis force
studied.

Numerical experiments show that the lack of stability that can be anticipated from 1
previous discussion, in fact, exists. Oscillations occur when the cell Ekman number, defi
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as

v
wh?

Ekn = (33)

is very small; that is, the Coriolis force dominates the viscous one.

3.2. Preliminaries

In order to stabilize the numerical solution when,B& very small, we apply now a
technique that generalizes the characteristic Galerkin method presented in the pre\
section. The idea is to discretize the temporal derivative of the velocity taking into acco
the variation in time of the rotating basis to which we refer this vector field. This basis w
be denoted by

B(t) :={eu(t), ex(t), e3(t)}. (34)

Let us consider that the original coordinate sysfem X», X3} is referred to the canonical
basisB(0), whereas for time the coordinates arfy; (1), y(t), ys(t)}. Points in this case
are denoted by.

The vectors (t) verify the differential equations

d .
d—?:wxe., i =123 (35)

If we introduce the matrid, of componentsh;; = ejxjwi, With & being the third-order
permutation tensor, Eq. (35) may be rewritten as

de_

L —Aeg, =123 36
o e, i (36)

This equation results from the fact that the vecw(t) are obtained from a rotation of the
vectorsg (0) given by

et)=TMt)g©), i=1223 (37)
where
T(t) ;= exp(At). (38)
Observe that, sinca is skew-symmetric,
THt) = exp(Alt) = exp(—At) = T 1(t); (39)

thatis,T(t) is orthogonal. From this and Eg. (37) we have the following equations relatir
basis vectors and coordinates at different times:

et+t)=Tthe) =T;t)Het) Vvt,t'>0, (40a)

y(t) = TH)x. (40Db)
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Let us denote by (X, t; t) the trajectory referred to the badit) of the particle that
at timet is located at the positiok referred to the basig(0). Using the notation of the
previous section, the vector of position of this particle is

rex t ) = Xi(x, t; 0)e (0) = Yi(x, t; te (t). (41)

If u(y, t) is the velocity field of the spatial points referred to the b#&Xiy, the analogous
to problem (4) in the rotating basis is

—Yi(X Gt =u(YX ), ) (42a)
Yi(X, t;t) = Vi (t) = Tji (OX; (42b)

fori =1, 2, 3. In Eq. (42b) we have used Eg. (40b). To simplify the notation, we shall wri
Y (t) instead ofY (X, t; t) in the following.

From Egs. (36), (41), and (42) it follows that the velocity of the particle considered
Eq. (41) is

V(X t;t) = d%r(i E1 =u(Y®), e ®) + YDA 1), (43)

and the acceleration term in the complete Navier—Stokes equations may be written as

d
at) = &[Ui (YO, De(t) + YihAe ()] (44)

This expression accounts for the substantial derivative and the Coriolis and centrift
forces in Eq. (1a) if we particularize it far=t.

Another result that we shall need is the expression of the differential operators when
change the reference system. The orthogonality of the magtixin Eq. (38) implies that
both the expressions for the Laplacian and the gradient of a given scalar fupcsion
independent of the coordinate system used to compute them; that is, we have that

2 2
% 0% p(X) = EVEY p(T)Y), (45a)
A (X) (0)—i (TOye () (45Db)
9% Y080 = SLeTbye®.

All these expressions will be used in the sequel.

3.3. Time Discretization in the Inertial Basis

The idea now is to discretize the Navier—Stokes equations, referring all the vectors to
inertial basis. In particular, we consider the vectors of the bagisreferred to the basis
B(0).

Let us obtain first the expression of the momentum equation in the inertial basis bu
terms of the coordinately; (t), y2(t), ys(t)}. Starting with the force vector, let us write it
as

f = f2(x, e 0 = fi(y, t)e (), (46)



478 RAMON CODINA

where the componentf and f are related through both a change of basis and a chan.
of coordinates, that is,

fi(y. t) = Tji ) f2(x. b). (47)

For the pressure term we have that

3 3
% p(x,)e (0) = 3y p(y, t)e (1), (48)

where we have made use of Eq. (45b) and we have denoted aggityhty the expression
of the pressure in terms gf

If v(x, t) is the velocity field in terms of and referred t@&(0), using Eqgs. (43) and (45a)
we get

AxV(X, 1) = AxUi (T OX, D& (1) 4+ Ax(Tjix))Ae ()
= Ayui(y, e (b). (49)

For the sake of clarity, we have used a subscript to indicate the coordinates with respe
which the Laplacian is computed but will be omitted in the following.

From Eqgs. (44), (46), (48), and (49) we finally have that the conservation of moment
for a particle of incompressible fluid the trajectory of whiclYig) leads to the equation

d
a[ui (YO, De ) + YihAe (O] — vAui (Y(1), e (t)

0
v 3—;<Y(t>, e ® — fi(Y(t). e (t) = 0. (50)

This equation may be considered written initertial basisB(0), provided that the vectors
g (t) are expressed in this basis. The basic idea of the method proposed in this paper
discretize now this equation, taking into account the fact that the vegt@ysdepend on
time. Using the Crank—Nicolson scheme as in the previous section to perform the ti
discretization yields

1
E[Ui (Y(thi1), thyn)& (thpn) + Vi (thrDAE (thg) — Ui (Y(t), th)e (th) — Yi(th) Ae (th)]

= g[Aui (Y(tns1), the1)8 (trsn) + AU (Y (), t)6 ()]

1[0

ad
43 | (V). e (o) + 5 (V). b8 )

1
- E[ fi (Y(th1), the)€ () + i (Y (o), th)e ()] = 0. (51)

The objective now is to express both the vectors of posiiéin, 1) andY(t,) and the
vectorse (t,11) ande (t,) in terms of a reference positiovi(t) and a reference system
of vectorsg := g (t). The first part is completely analogous to what was done in th
previous section. We shall simply wriyefor Y (t), since this position is arbitrary. Also, we
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taket =t, + yk, wherey is a free parameter. To expresst,,.1) ande (t,) in terms of
& (i =1, 2, 3) we shall use the Taylor expansion

& (th+1) = T(A - ke
= exp[A(1 - y)Kle
_ _ 1 _
=& + (1—y)kAg + E(l — 1)%k2A%8 + O(Kd) (52a)
and, similarly,
_ _ 1 _
& (th) = & — ykAg + Ey/zszza + O(k3). (52b)

From problem (42) it is clear that all the approximations along the characteristics fol
in the previous section can be used here. In particular, using Egs. (10) and Egs. (52)
easy to see that for any vector fieldy, t) = w;(y, t)g (t) we have that

ﬂ

wi (Y(tn41), thr1)€ () = w| & +1- )/)kuJ 3y, Le
J

+ (1 — y)kul'Ag + O(K?), (53a)

n

—_ ow;' — _
wi (Y(th), th)& (t) = w'e — yku] ay? & — ykuw[Ag + O(k%),  (53b)
J

from where it follows that
1
é[wi (Y(tht1), tht1)& (1) + wi (Y(tn), th) e (th)]

n+l/2

; "Ag + O(K?). (54)

Let us concentrate now on the term coming from the discretization of the tempo
derivative in Eq. (51) that we split 86 =77 + 7, where

1
T = R[Ui (Y(ths1), thyp) € (th) — Ui (Y(t), th)& (tn)], (55a)

1
T = E[Yi (th+1)A8 (th+1) — Yi(tn)Ae (tn)]. (55b)

Making use of Egs. (12), (13), and (52) it is found that

d Cy— NV
n+1/2a _u,n+1 e _|_uin+1 YAg

(U™t —ul'g +u

Xl =

T =

3 3 3
+= (1 2y)|{uI y <uJ W )a +2u! Wu”Ae + u'A%g ] + 0(k?, (56a)

T = ”“/ZAa +yiA%g

3 _ _ _
+5 (1 —2y)k {ug‘a—y_u{‘Aa + 2uPA%g + yiA3e|} + O(Kk?). (56b)
J
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If now we use the identity
na25 n 0 25
uA%e =u' —ViA%e, (57)
Y

the temporal ternfT = 7; + 7, can be written as

1 _ 0 ., _ _
T = E [un+1 Uin]el + UTH/ZaT/.uinH ya + (un+1 y + un+1/2)AQ + yiA2e|
J
1 d d
~(1-2y)ku'— |u u 2uMAE + yiA%E
+2( Y) |ay||:13yJ el"‘ e + Y :|
1 0 n 25 2
+50- 2y)kA U] — By, u'e + 2uAg + yiA%e | + O(k?). (58)

The final semidiscrete scheme can be obtained by using this and Eq. (54) in Eg. (51). Al
vectors will be expressed in terms their components referred to theflasis {€1, &, €s).
We may therefore write the momentum equations in this basis.

For the incompressibility condition, from Eq. (43) it is easy to see that

ol i
Yy - V(X 1) —a—”— Uy (st >T.,(t>+y,A.T|,(t>]—%w,t), (59)

which we write simplyV - u. Using Eq. (20) for the semidiscrete problem we have toimpos
thatv . u™!=0.
From the results obtained, we see that the final semidiscrete problem to be solved is

1
R[un+1 UM UYL Y s (UMY Mt Y/2)  AuHY2 gy 2

k k
+wx wxr) —f"Y2_(2y —1)§u”-v/vt“ -2y — 1)5(4; x M" =

V.u™t =0, (60)
We have introduced thepatial residualof the Navier—Stokes equations
M:=u-VUu+2w xU—VvAU+VpP+wx (wxr)—f (61)

and we have denoted again bthe vector of position referred #(t).

In the following section we shall use the finite element method for the space approxir
tion. We shall apply the Galerkin method to problem (60), which has been obtained fr
a discretization in time in the inertial basis. This is why we call our approachérgal
Galerkin method

As in the previous section for the characteristic Galerkin method, once arrived at pr
lem (60) the terms appearing there may be evaluated at different times leading to diffe
schemes. The important point is the presence of the terms\ithat contribute to enhance
the numerical stability of these possible schemes. Also, as it has been pointed out be
other schemes of higher order may be derived using the previous ideas.

To close this section, let us remark that similar arguments can be applied when fractic
step methods are employed. Using, for example, the classical approach of Chorin [12]
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Temam [13], the pressure term can be dropped from the time discrete equation (51) and
the resulting velocity projected onto the space of solenoidal vector fields in the class
manner. In any case, the bottom line will be again the appearance of the stabilizing te
in Egs. (60), with different expressions for the pressure gradient, depending on the t
of fractional step method employed. Also, and as it is explained in Ref. [14], the use
some fractional step methods can be interpreted as a purely algebraic operation on the
discrete system. Of course, this possibility is open using our approach.

4. FINITE ELEMENT APPROXIMATION

4.1. Weak Formulation

Problem (60) is a time discrete version of the incompressible Navier—Stokes equati
written in a rotating frame of reference. To obtain a fully discrete problem, a spatial d
cretization must be used. We use here the finite element method.

First, we have to obtain the weak form of problem (60). Let us consider that the bound
conditions are

u=u onlp, (62a)

au
—v%+np_t only, (62b)

wherel'p andI'y are the components of the boundagy, where Dirichlet and Neumann
types of boundary conditions are prescribed, respectivelyamdt are the boundary data.
Condition (62b) can be replaced by the prescription of the stress vector on the boun
provided the viscous term in Eq. (1a) is written as the divergence of the strain rate ter
multiplied by the viscosity.

Problem (60) has a free algorithmic parametéhat defines the reference system (coor-
dinates and basis) at which the equations are discretized. Instgagvefcan equivalently
consider as the algorithmic parameter

k
T:=Q2y — 1)5, (63)

that we callintrinsic time analogously to the algorithmic parameter found in similar meth
ods, such as SUPG [5].

Let v be a velocity test function (vanishing éh) and letq be a pressure test function.
When the momentum equation in (60) is multipliedvtyvo new terms appear with respect
to the standard Galerkin method. The first of them is

—/v-r[un VM dQ = —/ n- u”tv-M“dF+/[(V-u“)v+u“ -VV] - e M dQ.
Q o0 Q
(64)

If we further assume that1" vanishes on the boundaéf2 and use the fact that" must
be divergence-free, we obtain

—/ v-[u" - VMM dQ = /[un -V -t MM dQ. (65)
Q Q
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When the last term in the momentum equation of (60) is multiplies Bgd integrated
we get

—/V-[‘cwx/\/ln]dﬂz/[wxv]-rM”dQ. (66)
Q Q

From Egs. (65) and (66) it is seen that the weak form of problem (60) is

un+l —ygn
/ V- [T + un+1/2 . Vun+1—}/ + w X (urH—l—y + un+1/2):| dQ
Q

+v/Vv:Vu”+1/2dQ—/ p”+1/2V~de—/v-[f”+1/2—w><(wxr)]dQ
Q Q Q

—/ V-tdF+/(un~VV+wxV)-rMndQ:O,
I'n Q

(67)
/ qVv -u"tde = 0.
Q
These equations must hold for all appropriate test functiarsdq.
4.2. Space Discretization
Let us consider now a finite element partitig2®}, e = 1, ..., ng, of the computational

domain. From it we construct the approximation spaces to the velocity and the pre
sure made up of functions which are piecewise polynomials, continuous in the case of
velocity. Functions belonging to such discrete spaces are denoted by a sulbscripe
following.

The finite element approximation of the weak statement (67) is in principle straightf
ward. The velocityu and pressur@ must be replaced by finite element approximations
andp, and the test functions must be taken in the finite element spaces. We denote thes
functions by, andg,. However, the interpretation of the term that involves the integral
M" over$2 needs a little attention. Numerically, we have to give sense to this integral, sir
the viscous term appears.M. Using only continuous approximations (that is, the standar
C° approach), the Laplacian of the discrete velocities is not square integrable. Howe
we may interpret the integrals as it is usually done in residual based stabilization meth
[5, 6], that is, as

Nel

/ (U - VVh + w x V) - TM] dQ = Z/ (Up - VVh +w X V) - TM{dQ.  (68)
/ e:1 Qe

For smooth functionsf, = [, so that the consistency of the method is preserved. Tt
terms appearing in this equation are precisely those responsible for the numerical stat
of the finite element scheme.

The velocity and pressure finite element interpolations must satisfy the classicak@abu
Brezzi (BB) stability condition (see, e.g., [15]) if no additional pressure stabilization tec
nigue is used. One of the possible choices, used in the third example of the following sect
is the Q2/ Q1 element (continuous multiquadratic velocities, continuous multilinear pre
sures). In the rest of numerical examples we shall use the well-kr@yyiPy element
(continuous multilinear velocities, piecewise constant pressures), together with a pen
method to eliminate the pressure at the element level (see, e.g., [16]). This element doe



N-S EQUATIONS WITH CORIOLIS FORCES 483

satisfy the BB condition, but provides optimal rates of convergence for the velocity (see [
for a further discussion about this controversial element). Also, in the first numerical test
shall compare our results with those obtained usingheterpolation for both the veloc-
ity and the pressure with the Galerkin/least-squares (GLS) approach introduced in Ref.
and applied to rotating flows in Ref. [11]. In this case, the tafriVvy +w x v, in Eq. (68)
has to be replaced g - Vvn + 2w x Vi —v Av + Vdh, Wheregy, is the pressure test function.

It remains to define how to compute the intrinsic timeéBased on the analysis made in
Ref. [8], we compute it as

-1
v U

T = Fvﬁ'f‘FcF‘i‘Frw , (69)
whereF,, F;, andF; are algorithmic factors that determine the importance of the chara
teristic viscous, convective, and rotation frequencies. For linear elements, wWe, také
F.=2, andF, =1, whereas for quadratic elements we td&ke=40, F. =4, andF, = 1.
We compute a value af for each element, taking as the mean velocity ardits element
diameter.

5. NUMERICAL EXAMPLES

5.1. Space Convergence Test

As a first case, we consider a 2D steady-state test with analytical solution to check
behavior in space of the finite element approximation to problem (67). Wellad® the
unit square and the force term so that the solution of problem (=9 andu(x, y) =
(fO0g(y), —f'00g(y)), with f(x) =x*(1—x)?exp(7x) and g(y) =y*(1—y)*. This
velocity field vanishes 0A¢2.

As physical properties we have taken=0.005 andw =1000. We have used three
uniform finite element meshes (meshes 1, 2, and 3) of 10, 20x 20, and 40< 40Q1/ Py
elements, so that the element sizestate0.1, h = 0.05, andh = 0.025, respectively. The
resulting values of the element Reynolds number are not very high and for this partict
example the standard Galerkin approach works inthe absence of the Coriolis force. Howe
when this force exists, the Galerkin method yields completely oscillatory results. The
results are shown in Fig. 1, where also the streamlines obtained using the inertial Gale
method (IGM) are shown. In this case there are no oscillations.

In Fig. 2 we have plotted the convergence of the velocities obtained with the IGM as
mesh is refined, both in thid! and theL.? norms. These results are compared with thos
obtained using the GLS method. In both cases, convergence is optimal.

Similar results are obtained in the 3D extension of this example that we consider n
The domain i2 =0, 1] x [0, 1] x [0, 0.4] and is first discretized using a coarse mesh o
10x 10x 4 elements. We take the force term so as to obtain as exact solut
ux,y, 2= (h@ fx)g'(y), —h(2 f'(x)g(y), 0), with f (x) andg(y) as before ant(z) =
z(10 — 25z). In order to test the numerical method, we have taken different vectoat
with the same normw = 1000. In all the cases we have obtained good solutions using t
IGM.

In Fig. 3 we plot the velocity vectors obtained far parallel to (1, 1, 1), both for
the standard Galerkin method and the IGM. The oscillations found using the former
completely removed by the latter.
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3 4

FIG.1. (1) Streamlines using the Galerkin method with mesh 1; (2) same as (1) with mesh 2; (3) same a:
with mesh 3; (4) streamlines using the inertial Galerkin method with mesh 1.

5.2. Ekman Boundary Layers

This example is intended to illustrate the discussion on the stability of Eq. (30), tha
when there are no pressure gradients.

Let us consider a flow over a plane with the no-slip condition that has to match a g
strophic flowu = (uy, 0, 0) as the vertical coordinateincreases. The speed of rotation is
assumed to follow the axis. It is not difficult to see (see, e.g., Ref. [18]) that the solutior
to this problem isu= (ux(2), uy(z), 0), whereuy(z) and uy(z) are the solution of the
equations

2.,

dz?
2

d<u _
—l)Fzy + 2wUyx = 2wUy,

—V

— 2wuy =0,

with the boundary conditions, = uy =0 for z= 0 anduy — uy, uy — 0 asz — oc.

We have solved this problem without the assumption on the expression for the ve
city, taking as the computational doma= [0, 1] x [0, 1] x [0, 10] and prescribing the
velocity to be the same on the four faces parallel tazthgis and to the analytical solution
atz=10. The finite element mesh used is made ef5x 30 Q;/ Py elements.

In Fig. 4 we plot the profiles of thg andy velocities along the vertical direction. It is
seen that in this case the results obtained using the Galerkin method are virtually the s
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GLS method —— ]
IG method ---%--- ]

0.01 0.1
h

FIG. 2. Convergence of the inertial Galerkin and the GLS methods. [émorm; bottom:H* norm.
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FIG. 3. Velocity vectors for the 3D test case. Left: Galerkin method; right: inertial Galerkin method.

as those obtained using the IG method. For “large” values of the Ekman nymbet)
the solution is smooth, but when it decreages- 10~° in the figure) a boundary layer is
created that leads to localized numerical oscillations. This could be expected from Eq. (
from where its is seen that the stability is good, but théd is not.

5.3. Rotating Poiseuille Flow

In this example we consider a 2D Poiseuille rotating flow. The computational dome
is the rectanglef2, 2] x [—1, 1] which rotates about the origin with a speed of rotatior
w =100. The Reynolds number is taken small enough so as to neglect the convective
of the Navier—Stokes equations. The problem is therefore linear.

A parabolic velocity profile with maximum velocity (1, 0) is prescribed at the inle
x = —2, whereas at the top and bottom walls<{ —1, 1) the no-slip condition is employed.
If the velocity is also prescribed at the outbet= 2, the velocity solution would not be
affected by the fact that the domain rotates (both the Coriolis and centrifugal forces
curl-free, and therefore, they can be written as the gradient of a scalar function that ca
included in the pressure). We have used the natural boundary condition (&2bYatwvith
t=0.

Let us consider first the steady-state problem. In turns out that for this very sim
problem a velocity “boundary layer” is created at the outlet when the Ekman numt
decreases. To understand the phenomenon, suppose that the centrifugal force is dro
The Coriolis force can be replaced by a body force that acts as a traciahe outlet,
pointing downwards at outflow points. This directs the flow towards the bottom of the outl
This effect is more important the lower the Ekman number is. In order to capture it, we h:
employed a mesh of 60Q,/ Q1 elements (with 2501 nodal points) refined ngas —1.
The velocity field obtained using this mesh and the Galerkin methodwwiti is shown
in Fig. 5.
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FIG.5. Velocity field for the steady state rotating Poiseuille flow problem (without centrifugal force). Galerki
method withv = 1.

The boundary layer created as the Ekman number decreases is shown in Fig. 6.
abscissa is measured in grid spacing units, since otherwise the boundary layer is too tr
be observed. It is seen that the Galerkin method presents global oscillatians-fa0—3
(that are present in the whole computational domain), whereas the |G method only pres
localized boundary layer oscillations. In fact, for smaller values thfe Galerkin solution
is completely oscillatory, whereas the solution obtained with the 1G method is perfec
smooth for allv.

1800 T T T T
[ ] nu=1.
nu= 1

1600 | Ru =
1400 | nu=9.0e3, |
1200 -
1000 + .
800

600

x-velocity

400
200

0

-200

-400 1 L t 1
0 10 20 . 30 40 50
grid units

FIG.6. x-velocity profiles at the outlet for different values of the viscosity using the Galerkin method. Resu
using the IG method are only shown foe= 10-3. Abscissa in grid units.
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FIG. 7. Streamlines for = 1072 using the IG method for the steady-state problem.

The streamlines computed usign the IG method (incorporating now the centrifugal for
are shown in Fig. 7, whereas the pressure contours are shown in Fig. 8. It is observed
the centrifugal force dominates the pressure and also that the conglitiod at the outlet
to which (62b) reduces whanis very small is well approximated.

Let us turn our attention now to a transient problem. Even though the main reason for
design of the IG method is the problem of the Galerkin approach for the space approxi
tion, itis also interesting to study the approximation properties of the transient scheme (
For that we have added a rotating body force to the previous scenario that may be tho
of as the gravity expressed in the rotating frame. The magnitude of this force is 2000. -
results shown correspond to= 10-3, the case in which the Galerkin solution has globa
oscillations.

Figure 9 shows the evolution of thevelocity component in time at the point of co-
ordinatesx =1.067, y=0.548 that has been taken as reference. The scheme label
as “Crank—Nicolson” corresponds precisely to (67), whereas “Euler” corresponds to
scheme obtained by replacing unknowns computé@at’ by unknowns at"+1. In order

\ .) )

FIG. 8. Pressure contours for= 102 using the IG method for the steady-state problem.
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FIG. 9. y-velocity evolution in time at point (1.067, 0.548) using the IG method.

to analyze the accuracy of these schemes, we have solved the problem with a very s
time step k = 10~°) and using the Crank—Nicolson scheme. The solution obtained has be
used as reference for computing the error plots of Fig. 10. From these, it is seen that for
problem convergence is not optimal. The regression slopes for #imely velocity errors
are 0.80 and 0.64 for the Euler method and 1.23 and 0.67 for the Crank—Nicolson metl
This lack of optimality is due to the fact that the solution in this case is not smooth (obse
from Eq. (67) that space errors will also affect the time approximation due to the stabili:
tion term). Whern = 1 the optimal rate of convergence is found (2 for the Crank—Nicolso
method, 1 for the Euler method), although in this case also the Galerkin method works v
(results are not shown).

Finally, in Fig. 11 we plot the streamlines computed using the IG method 0102
at two different time steps. It is interesting to remark that the recirculation zone obsen
at the bottom of the outlet grows and decreases periodically in time, as it can be obse
from this figure.

5.4. Flow Simulation in a Pressure Gear Pump

In this example we present the numerical simulation of a “real-life” problem using t
inertial Galerkin method. The problem consists of the analysis of the steady state oil f
through a tooth of a pressure gear pump, considered as representative of the flow in the w
pump. The technological importance of this example relies on the fact that the numer
simulation allows us to predict the qualitative tendency of a certain pump design to h:
oil losses, as well as the power needed to make the pump rotate.

We have considered a computational domain discretized using the finite element n
shown in Fig. 12, which consists of 68,041 / Py elements and 75,936 nodal points. The
domain comprises a sector with one tooth. Periodicity boundary conditions are prescri
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FIG. 10. DiscreteL? errors in time of thex andy velocity components at point (1.067, 0.548) using the 1G
method.
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(right).
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FIG. 13. Detail of the finite element mesh between the tooth and the enclosure.

on the planes limiting the sector. For symmetry reasons, only the domain with one half of
tooth is needed. The velocity is prescribed on the upper enclosure, oplgnGipart from
the tooth (see the detail of the mesh in Fig. 13), to the velocity of rotatios 10472 s1)
times the radius of the pump (18un). In front of the tooth there is a lateral plate at a
distance of 60 mm, where the oil can also flow.

The kinematic viscosity of the oil employediis= 85.0 cs. Even though oil flow within
pumps is laminar, no attempt has been made in this simulation to capture the boun
layers, and the velocity has been allowed to slip on all the surfaces.
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FIG. 14. Velocity field on the left surface of the tooth.
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FIG. 15. Vortex in the symmetry plane.

The velocity field computed on the left surface of the tooth is shown in Fig. 14. Itis se
that several three-dimensional vortices are formed. A detail of the vortex on the symm
plane is shown in Fig. 15. Pressure contours on this face are shown in Fig. 16, whe
Figs. 17 and 18 show the velocity field and the pressure contours on the periodicity plal
respectively. The pressure range on these planes3&x110° mn?/s?. Finally, Fig. 19

shows the velocity field on the right surface of the tooth.

‘

FIG. 16. Pressure contours on the left surface of the tooth.
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FIG. 17. Velocity field on the periodic walls of the computational domain.

The results of this example are perfectly converged (up to a tolerance of 0.01% in
discrete velocitylL? norm). Using the standard Galerkin method we have been unable
obtain converged solutions.

6. CONCLUSIONS

In this paper we have presented a stabilization technique to cope with the problems fo
in the space approximation of the incompressible Navier—Stokes equations when stan
centered or Galerkin schemes are used. The method is based on a time discretizati
the total time derivative, including the time variation of the basis vectors for rotating flow

bz

X

FIG. 18. Pressure contours on the periodic walls of the computational domain.
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FIG. 19. Velocity field on the right surface of the tooth.

In principle, any time discretization can be used, although we have employed here
generalized trapezoidal rule.

In the absence of Coriolis forces, it has been shown that the classical character
Galerkin method is closely related to other methods based on the introduction of strearr
diffusion, such as SUPG or Taylor—Galerkin. The basic idea of the derivation is to us
Taylor expansion of the unknowns along the trajectory of the particles. The extension of
idea to rotating flows has led to the introduction of a new term that stabilizes the numer
scheme when the Coriolis force dominates the viscous one. The final numerical met
consists in the addition of the stabilizing term given by Eq. (68) to the standard Galer
formulation of the problem.

It has been shown in a simple test case that the method has an optimal rate of converg
and it has been demonstrated that it is effective to stabilize both convection and rotat
Other numerical examples have also shown the effectiveness of this stabilization techni
even in real flow problems. However, in many real problems it has to be pointed out t
the values of the Ekman number for which the Galerkin formulation fails correspond
extremely high values of the Reynolds number. Therefore, in realistic physical situatic
the problem of important Coriolis force appears, together with complicated flow behav
and, probably, turbulence. Thus, numerical instabilities due to convection are more lik
to occur than those due to rotation only.
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